

Initial En Route Qualification Training

Instructor Lesson 37 Radar Vectoring

Course 50148001

LESSON PLAN DATA SHEET

COURSE NAME: INITIAL EN ROUTE QUALIFICATION TRAINING

COURSE NUMBER: 50148001

LESSON TITLE: RADAR VECTORING

DURATION: 1+30 HOURS

DATE REVISED: 2022-02 **VERSION:** V.2022-02

REFERENCE(S): FAA ORDER JO 7110.65, AIR TRAFFIC CONTROL; FAA ORDER JO

7110.311, PROCEDURAL GUIDANCE FOR FAA ORDER JO 7110.65 FOLLOWING EN ROUTE AUTOMATION MODERNIZATION (ERAM)

IMPLEMENTATION

HANDOUT(S): NONE

EXERCISE(S)/ NONE

ACTIVITY(S):

END-OF-LESSON YES (REFER TO ELT37.PDF)

TEST:

PERFORMANCE NONE

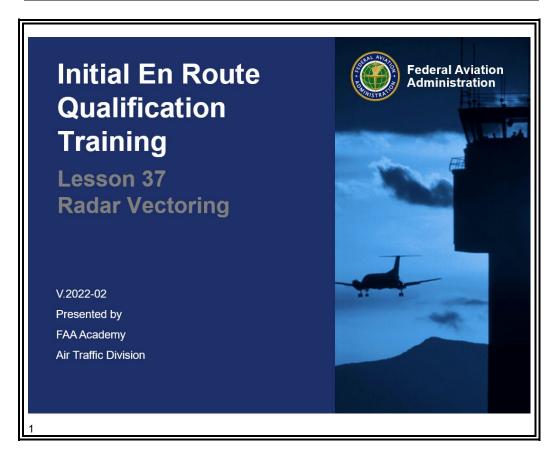
TEST:

MATERIALS: NONE

OTHER PERTINENT NONE

INFORMATION:

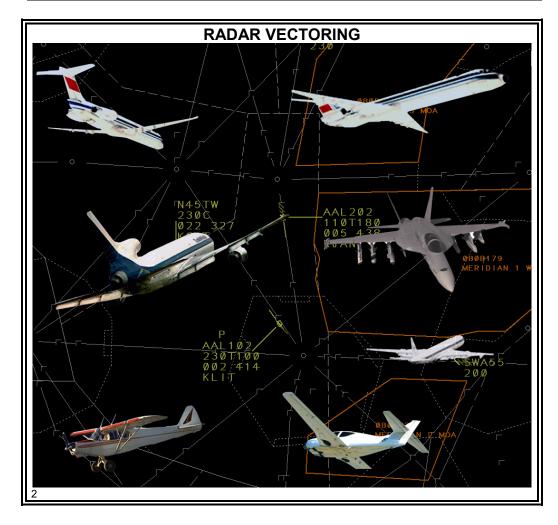
NOTE: As you prepare for this lesson, recall and be prepared to talk about examples and personal experiences that illustrate or explain the teaching points in the lesson.


DISCLAIMER

Air Traffic training materials are provided by the Federal Aviation Administration Office of Technical Training. The training materials are subject to revision, amendment and/or corrections. The materials are to be used for the intended purpose only and are not intended for distribution beyond the purpose of training. Updates (if required) shall be provided through a formal distribution process. Unsolicited updates will not be processed.

INTRODUCTION

Gain Attention



In the nonradar scenarios, you applied lateral separation in conjunction with vertical separation using crossing restrictions. In a radar environment, radar vectors are used, primarily by the Radar Controller, to achieve lateral separation between two aircraft without having to use vertical separation.

INTRODUCTION (Continued)

Opening Scenario

Vectoring aircraft is a radar separation technique that can benefit both the pilot and the controller, resulting in a safe, orderly, and expeditious flow of traffic and reducing delays for both arrivals and departures.

Purpose

This lesson covers the reasons and methods for issuing vectors.

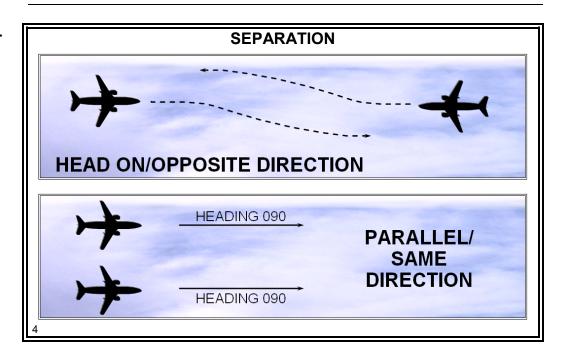
INTRODUCTION (Continued)

Lesson Objectives

LESSON OBJECTIVES

- On an End-of-Lesson Test and in accordance with FAA Orders JO 7110.65 and 7110.311, you will identify:
 - Reasons for issuing radar vectors
 - Procedures for issuing radar vectors

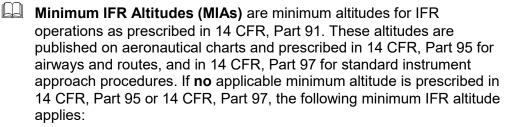
NOTE: Teach from graphic.


VECTORING

TermJO 7110.65, Pilot/Controller Glossary

A **vector** is a heading issued to an aircraft to provide navigational guidance by radar.

Reasons for Vectoring JO 7110.65, par. 5-6-1



- Reasons for vectoring aircraft include:
 - Separation
 - From other aircraft
 - From airspace
 - Safety

Example: When skydivers are making a jump, vector around jump aircraft.

GENERAL REQUIREMENTS

Minimum Altitude Definitions JO 7110.65, Pilot/Controller Glossary

- In designated mountainous areas, 2,000 feet above the highest obstacle within a horizontal distance of 4 nautical miles from the course to be flown; or
- Other than mountainous areas, 1,000 feet above the highest obstacle within a horizontal distance of 4 nautical miles from the course to be flown; or
- As otherwise specified by the Administrator or assigned by ATC.

Minimum Vectoring Altitude (MVA) is the lowest MSL altitude at
which an IFR aircraft will be vectored by a radar controller, except as
otherwise authorized for radar approaches, departures, and missed
approaches. The altitude meets IFR obstacle clearance criteria. It may
be lower than the published MEA along an airway or J-Route segment.
It may be utilized for radar vectoring only upon the controller's
determination that an adequate radar return is being received from the
aircraft being controlled. Charts depicting Minimum Vectoring Altitudes
are normally available to controllers, and not to pilots.

NOTE: MIAs and MVAs are the same in Aero Center.

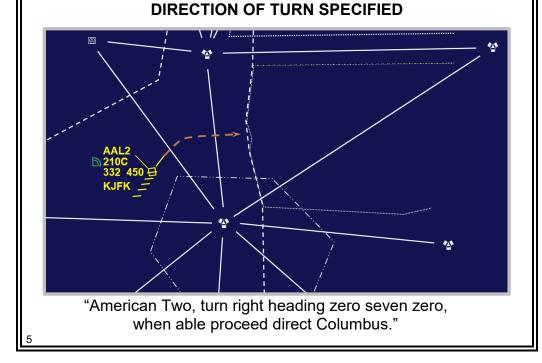
Application JO 7110.65, par. 5-6-1

Vector aircraft at or above the MVA or MIA.

GENERAL REQUIREMENTS (Continued)

Conditions

JO 7110.65, par. 5-6-1


IFR aircraft

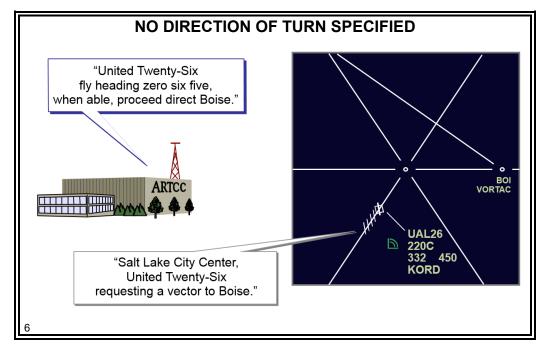
- Vector an IFR aircraft if it is:
 - Within controlled airspace
 - At or above the appropriate minimum altitude
 - Within your area of jurisdiction, **unless** otherwise coordinated
 - Permitted to resume its own navigation within radar coverage

PROCEDURES

Items to Specify JO 7110.65, par. 5-6-2

- O Vector aircraft by specifying:
 - Direction of turn, if appropriate, and magnetic heading to be flown

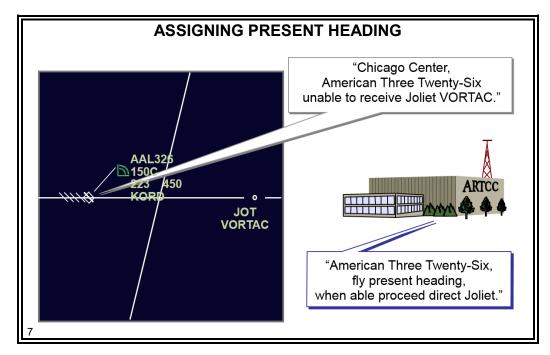
Continued on next page


PROCEDURES (Continued)

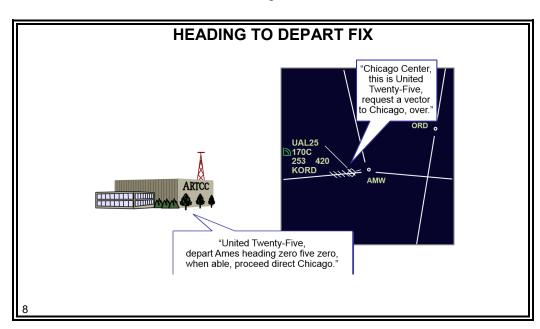
Items to Specify (Cont'd) JO 7110.65, par. 5-6-2

** NOTE: Click twice to show dialogue.

Continued on next page

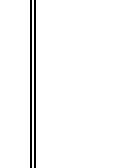

PROCEDURES (Continued)

Items to Specify (Cont'd) JO 7110.65, par. 5-6-2

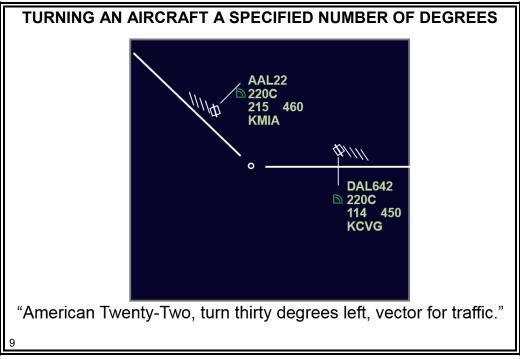

Phraseology Examples

NOTE: Click twice to show dialogue.

→ Phraseology Example



F NOTE: Click twice to show dialogue.


Continued on next page

PROCEDURES (Continued)

Items to **Specify** (Cont'd) JO 7110.65, par. 5-6-2

Phraseology Example

- The number of degrees, in group form, to turn and direction of turn
- When flight data processing is available
 - Update the route of flight in the computer, unless:
 - Operational advantage is gained
 - Coordination is accomplished

Advising **Pilots** JO 7110.65.

par. 5-6-2

- When initiating a vector, advise the pilot of the purpose.
- Advise the pilot of what to expect when the vector is completed.

VECTORING TECHNIQUES

Vector

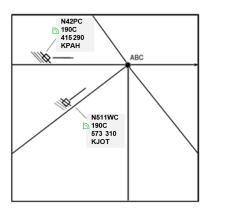
JO 7110.65, par. 5-6-2

- Determine the appropriate heading based on these factors:
 - Wind
 - Weather
 - Traffic
 - Pilot requests
- If needed for spacing/separation, ensure an aircraft's heading by assigning it:
 - Don't assume an aircraft will continue on the same track without a heading assignment.

Good Controller Techniques

- Allow for increased compliance time and distance when aircraft is at:
 - Higher altitude
 - · Greater airspeed
- Techniques
 - · Utilize minimum heading changes
 - Turn slower aircraft behind faster aircraft if both are similar distances from converging points
- O Consider these conditions to obtain desired track:
 - · Effects of wind
 - · Ground speed
 - Turning distance

VECTORING TECHNIQUES (Continued)


Knowledge Check

KNOWLEDGE CHECK

QUESTION: N42PC and N511WC are flying the same route after the ABC VORTAC. To provide longitudinal separation, which aircraft should be vectored behind the other? The winds at FL190 are 180080.

NOTE: Click once to show answer.

ANSWER: N42PC should be vectored behind N511WC

IN CONCLUSION

Lesson Review

LESSON REVIEW

The following topics were covered in this lesson:

- Vectoring
- General requirements
- Procedures
- Vectoring techniques

11

NOTE: Teach from graphic. Review and elaborate briefly on the points on the slide.

End-of-Lesson Test

END-OF-LESSON TEST

Radar Vectoring

12